Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 328, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566015

RESUMO

BACKGROUND: Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS: Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION: Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.


Assuntos
Quercus , Retroelementos , Quercus/genética , Genoma de Planta , Cariótipo , Sequências Repetidas Terminais/genética , Evolução Molecular , Filogenia
2.
BMC Plant Biol ; 24(1): 168, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438905

RESUMO

BACKGROUND: Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS: A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS: A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.


Assuntos
Ecossistema , Quercus , Quercus/genética , Filogeografia , Florestas , Mudança Climática
3.
Mol Ecol Resour ; 24(3): e13914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108568

RESUMO

Quercus section Cyclobalanopsis represents a dominant woody lineage in East Asian evergreen broadleaved forests. Regardless of its ecological and economic importance, little is known about the genomes of species in this unique oak lineage. Quercus glauca is one of the most widespread tree species in the section Cyclobalanopsis. In this study, a high-quality haplotype-resolved reference genome was assembled for Q. glauca from PacBio HiFi and Hi-C reads. The genome size, contig N50, and scaffold N50 measured 902.88, 7.60, and 69.28 Mb, respectively, for haplotype1, and 913.28, 7.20, and 71.53 Mb, respectively, for haplotype2. A total of 37,457 and 38,311 protein-coding genes were predicted in haplotype1 and haplotype2, respectively. Homologous chromosomes in the Q. glauca genome had excellent gene pair collinearity. The number of R-genes in Q. glauca was similar to most East Asian oaks but less than oak species from Europe and America. Abundant structural variation in the Q. glauca genome could contribute to environmental stress tolerance in Q. glauca. Sections Cyclobalanopsis and Cerris diverged in the Oligocene, in agreement with fossil records for section Cyclobalanopsis, which document its presence in East Asia since the early Miocene. The demographic dynamics of closely related oak species were largely similar. The high-quality reference genome provided here for the most widespread species in section Cyclobalanopsis will serve as an essential genomic resource for evolutionary studies of key oak lineages while also supporting studies of interspecific introgression, local adaptation, and speciation in oaks.


Assuntos
Quercus , Quercus/genética , Filogenia , Haplótipos , Florestas , Demografia
4.
Plant Divers ; 45(5): 552-568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37936812

RESUMO

East Asian evergreen broadleaved forests (EBFLs) harbor high species richness, but these ecosystems are severely impacted by global climate change and deforestation. Conserving and managing EBLFs requires understanding dominant tree distribution dynamics. In this study, we used 29 species in Quercus section Cyclobalanopsis-a keystone lineage in East Asian EBLFs-as proxies to predict EBLF distribution dynamics using species distribution models (SDMs). We examined climatic niche overlap, similarity, and equivalency among seven biogeographical regions' species using 'ecospat'. We also estimated the effectiveness of protected areas in the predicted range to elucidate priority conservation regions. Our results showed that the climatic niches of most geographical groups differ. The western species under the Indian summer monsoon regime were mainly impacted by temperature factors, whereas precipitation impacted the eastern species under the East Asian summer monsoon regime. Our simulation predicted a northward range expansion of section Cyclobalanopsis between 2081 and 2100, except for the ranges of the three Himalayan species analyzed, which might shrink significantly. The greatest shift of highly suitable areas was predicted for the species in the South Pacific, with a centroid shift of over 300 km. Remarkably, only 7.56% of suitable habitat is currently inside protected areas, and the percentage is predicted to continue declining in the future. To better conserve Asian EBLFs, establishing nature reserves in their northern distribution ranges, and transplanting the populations with predicted decreasing numbers and degraded habitats to their future highly suitable areas, should be high-priority objectives.

5.
Mitochondrial DNA B Resour ; 8(4): 527-531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124995

RESUMO

Quercus kerrii Craib 1911 (section Cyclobalanopsis) is a widespread tree species in the tropical seasonal forests of southwest China and Northern Indo-China areas. In this study, we sequenced, assembled and annotated the complete chloroplast genome of Q. kerrii. The circular genome was 160,743 bp in length and had a GC content of 36.89%. The Q. kerrii chloroplast genome has a typical quadripartite structure, including two inverted repeat regions (length, 25,825 bp; GC content, 42.76%), a large single-copy region (length, 90,196 bp; GC content, 34.74%), and a small single-copy region (length, 18,897 bp; GC content, 30.60%). Genome annotation has indicated that the Q. kerrii chloroplast genome contained 131 genes, including 86 protein-coding genes, 37 tRNA, and eight rRNA. The phylogenetic tree showed that Q. kerrii had a close relationship with Q. schottkyana Rehder & E.H.Wilson 1916.

6.
Front Plant Sci ; 14: 1178245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235032

RESUMO

Introduction: Begonia L., one of the 10 largest plant genera, contains over 2,100 species, most of which have a very limited distribution range. Understanding the spatial genetic structure and distribution dynamics of a widespread species in this genus will contribute to clarifying the mechanism responsible for Begonia speciation. Methods: In this study, we used three chloroplast DNA markers (ndhF-rpl32, atpI-atpH, and ndhA intron), coupled with species distribution modeling (SDM), to investigate the population genetic structure and distribution dynamics of Begonia grandis Dryand., the species of Begonia with the widest distribution in China. Results: Thirty-five haplotypes from 44 populations clustered into two groups, and haplotype divergence began in the Pleistocene (1.75 Mya). High genetic diversity (H d = 0.894, H T = 0.910), strong genetic differentiation (F ST = 0.835), and significant phylogeographical structure (G ST/N ST = 0.848/0.917, P < 0.05) were observed. The distribution range of B. grandis migrated northwards after the last glacial maximum, but its core distribution area remained stable. Discussion: Combined, the observed spatial genetic patterns and SDM results identified the Yunnan-Guizhou Plateau, the Three Gorges region, and the Daba Mountains as potential refugia of B. grandis. BEAST-derived chronogram and haplotype network analysis do not support the Flora Reipublicae Popularis Sinicae and Flora of China for subspecies classification based on morphological characteristics. Our results support the hypothesis that population-level allopatric differentiation may be an important speciation process for the Begonia genus and a key contributor to its rich diversity.

7.
Front Pharmacol ; 13: 761618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586046

RESUMO

O. elatus Nakai is a traditional medicine that has been confirmed to exert effective antioxidant and anti-inflammatory functions, and is used for the treatment of different disorders. However, its potential beneficial effects on drug induced hepatotoxicity and relevant molecular mechanisms remain unclear. This study investigated the protective effect and further elucidated the mechanisms of action of O. elatus on liver protection. O. elatus chlorogenic acids-enriched fraction (OEB), which included chlorogenic acid and isochlorogenic acid A, were identified by HPLC-MS/MS. OEB was administrated orally daily for seven consecutive days, followed by a single intraperitoneal injection of an overdose of APAP after the final OEB administration. The effects of OEB on immune cells in mice liver were analyzed using flow cytometry. APAP metabolite content in serum was detected using HPLC-MS/MS in order to investigate whether OEB affects CYP450 activities. The intestinal content samples were processed for 16 s microbiota sequencing. Results demonstrated that OEB decreased alanine aminotransferase, aspartate aminotransferase contents, affected the metabolism of APAP, and decreased the concentrates of APAP, APAP-CYS and APAP-NAC by inhibiting CYP2E1 and CYP3A11 activity. Furthermore, OEB pretreatment regulated lipid metabolism by affecting the peroxisome proliferator-activated receptors (PPAR) signaling pathway in mice and also increased the abundance of Akkermansia and Parabacteroides. This study indicated that OEB is a potential drug candidate for treating hepatotoxicity because of its ability to affect drug metabolism and regulate lipid metabolism.

8.
Eur Radiol ; 32(1): 205-212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34223954

RESUMO

OBJECTIVES: Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. METHODS: An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. RESULTS: A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). CONCLUSIONS: Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment. KEY POINT: • AI system can predict time to critical illness for patients with COVID-19 by using CT imaging and clinical data.


Assuntos
COVID-19 , Inteligência Artificial , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
9.
Mitochondrial DNA B Resour ; 6(10): 2977-2978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553065

RESUMO

Quercus franchetii Skan, a crucial indicator plant of dry-hot valley with endemic to southwestern China. In this study, the complete chloroplast genome of Q. franchetii was assembled and characterized. The circular genome was 160,785 bp in length, containing a large single copy (LSC) region of 90,169 bp, a small single copy (SSC) region of 18,828 bp, and a pair of inverted repeat regions of 25,894 bp. Total 131 genes were annotated, comprising 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogenetic analysis indicated that Q. franchetii was closely related to Q. glauca and Q. chungii.

10.
Mitochondrial DNA B Resour ; 6(9): 2607-2609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395892

RESUMO

In this study, we sequenced the complete chloroplast genome of Quercus schottkyana. The circular genome is 160,746 bp in size, featuring a typical quadripartite structure comprising one large single-copy region (LSC, 90,136 bp), one small single-copy region (SSC, 18,942 bp), and two copies of inverted repeat regions (IRs, 25,834 bp). The genome contains 131 genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. The overall GC content is 36.90%. The maximum likelihood phylogenetic tree reconstructed using IQ-TREE indicated that Q. schottkyana has a closer relationship with Quercus sichourensis and Quercus acuta.

11.
Mitochondrial DNA B Resour ; 6(7): 1789-1790, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34104776

RESUMO

Quercus chungii F.P.Metcalf, a rare oak with endemic to southern China, belongs to the compound trichome base (CTB) lineage in the Cyclobalanopsis section. The complete chloroplast genome of the species was assembled and annotated in this study. The circular genome was 160,731 bp in size, presenting a typical quadripartite structure including one large single-copy region (LSC, 90,140 bp), one small single-copy region (SSC, 18,911 bp), and two copies of inverted repeat regions (IRs, 25,840 bp). It encoded a total of 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The maximum-likelihood (ML) phylogenetic tree reconstructed by IQ-TREE indicated that Q. chungii was more closely related to Q. myrsinifolia and Q. sichourensis.

13.
Front Plant Sci ; 12: 774232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035389

RESUMO

The Oligocene and Miocene are key periods in the formation of the modern topography and flora of East Asian and Indo-China. However, it is unclear how geological and climatic factors contributed to the high endemism and species richness of this region. The Quercus franchetii complex is widespread in the southeast Himalaya fringe and northern Indo-China with a long evolutionary history. It provides a unique proxy for studying the diversity pattern of evergreen woody lineages in this region since the Oligocene. In this study, we combined chloroplast (cpDNA) sequences, nuclear microsatellite loci (nSSRs), and species distribution modeling (SDM) to investigate the impacts of geological events on genetic diversity of the Q. franchetii complex. The results showed that the initial cpDNA haplotype divergence was estimated to occur during the middle Oligocene (30.7 Ma), which might have been raised by the tectonic activity at this episode to the Miocene. The nSSR results revealed two major groups of populations, the central Yunnan-Guizhou plateau (YGP) group and the peripheral distribution group when K = 2, in responding to the rapid YGP uplift during the late Miocene, which restricted gene flow between the populations in core and marginal areas. SDM analysis indicated that the distribution ranges of the Q. franchetii complex expanded northwards after the last glacial maximum, but the core distribution range in YGP was stable. Our results showed that the divergence of Q. franchetii complex is rooted in the mid-Oligocene. The early geological events during the Oligocene, and the late Miocene may play key roles to restrict seed-mediated gene flow among regions, but the pollen-mediated gene flow was less impacted. The uplifts of the YGP and the climate since LGM subsequently boosted the divergence of the populations in core and marginal areas.

14.
Radiology ; 296(3): E156-E165, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339081

RESUMO

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Radiologistas , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , China , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pandemias , Philadelphia , Pneumonia/diagnóstico por imagem , Radiografia Torácica , Radiologistas/normas , Radiologistas/estatística & dados numéricos , Estudos Retrospectivos , Rhode Island , SARS-CoV-2 , Sensibilidade e Especificidade , Adulto Jovem
15.
Radiology ; 296(2): E46-E54, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32155105

RESUMO

Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. Two hundred five patients with positive respiratory pathogen panel results for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia, according to original radiologic interpretation within 7 days of each other, were identified from Rhode Island Hospital in Providence, RI. Three radiologists from China reviewed all chest CT scans (n = 424) blinded to RT-PCR findings to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched patients was randomly selected and evaluated by four radiologists from the United States in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CT scans (n = 424), the accuracy of the three radiologists from China in differentiating COVID-19 from non-COVID-19 viral pneumonia was 83% (350 of 424), 80% (338 of 424), and 60% (255 of 424). In the randomly selected sample (n = 58), the sensitivities of three radiologists from China and four radiologists from the United States were 80%, 67%, 97%, 93%, 83%, 73%, and 70%, respectively. The corresponding specificities of the same readers were 100%, 93%, 7%, 100%, 93%, 93%, and 100%, respectively. Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.


Assuntos
Betacoronavirus , Competência Clínica , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Radiologistas/normas , Adulto , Idoso , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
16.
New Phytol ; 226(4): 1198-1212, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31609470

RESUMO

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Assuntos
Quercus , Fluxo Gênico , Genômica , Filogenia , Quercus/genética , Análise de Sequência de DNA
17.
Heredity (Edinb) ; 124(3): 499-513, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31772317

RESUMO

The evergreen broadleaved forests (EBLFs) of Southwest China have a long-term stable environment and support a diverse flora, thus forming a global biodiversity hotspot. However, the key drivers that have shaped the genetic diversity patterns of species in these EBLFs are not well understood. Quercus delavayi, Q. schottkyana, and Q. kerrii are sympatric oak species with different seed biological traits that are typical for these EBLFs. This study combined multilocus phylogeography and ecological niche modeling to screen 33 Q. delavayi populations. Their population genetic structure was inferred in comparison with previous studies on Q. schottkyana and Q. kerrii. The seed germination traits of all three species were also investigated. cpDNAs showed a significant phylogeographic structure in Q. delavayi, which was not detected in Q. schottkyana or Q. kerrii. Quercus delavayi, Q. kerrii, and Q. schottkyana exhibited different pollen-to-seed migration ratios (r = 219, 117, and 22, respectively), which are linked to the germination schedules of acorns. The distributions of Q. delavayi and Q. schottkyana remained long-term stable since the last glacial maximum (LGM) with a similar nSSR genetic gradient change along latitude. Instead, Q. kerrii experienced a prominent range expansion since the LGM with genetic diversification between the East and the West of the Tanaka line due to environmental heterogeneity. These results identify seed traits and environmental heterogeneity as two key drivers that shape the population genetic structure of EBLF trees in Southwest China. These should be considered in regional forestry conservation and management.


Assuntos
Genética Populacional , Germinação , Quercus , Sementes/fisiologia , China , Filogeografia , Quercus/genética
18.
In Vitro Cell Dev Biol Anim ; 55(9): 766-775, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31529418

RESUMO

Bioreactor-cultured adventitious roots (ARs) of the endangered medicinal plant Oplopanax elatus Nakai is a novel alternative plant material. To utilize ARs in the product production, the present study investigated the anti-inflammatory effect of O. elatus ARs. In the in vivo experiment, lipopolysaccharide (LPS)-induced acute lung injury disease model was established and several inflammatory indexes were determined. For the LPS-stimulated mice, after pretreatment of AR crude extract (200 mg/kg), cell infiltration in lungs was decreased, the production of proinflammatory mediators, including nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, and 1ß in the bronchoalveolar lavage fluid was evidently reduced, which indicated that O. elatus ARs had an anti-inflammatory effect. In the in vitro experiment, ethyl acetate (EtOAc) fractions (12.5, 25, and 50 µg/mL) were used to treat LPS-induced peritoneal macrophages (PMs) of mice. The production of NO, prostaglandin E2, TNF-α, IL-6, and IL-1ß in LPS-stimulated PMs was obviously inhibited (p < 0.05) after pretreatment with EtOAc fractions, and the expression of the inducible nitric oxide synthase and cyclooxygenase were also suppressed. To clarify the anti-inflammatory mechanism, effects of EtOAc fraction on changes of proteins related to the pathways of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) were investigated. The phosphorylation of extracellular regulated protein kinases, c-jun n-terminal kinase, and p38 MAPK in LPS-induced PMs was inhibited after pretreatment of EtOAc fractions. In addition, EtOAc fractions enhanced inhibitor of nuclear factor-kappa B-α expression and decreased nuclear translocation of p65 NF-κB. Thus, EtOAc from O. elatus ARs is involved in regulating MAKP and NF-κB signaling pathways to inhibit LPS-induced inflammation.


Assuntos
Inflamação/tratamento farmacológico , Oplopanax/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , NF-kappa B/genética , Extratos Vegetais/química , Raízes de Plantas/química
19.
Mol Phylogenet Evol ; 132: 36-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513340

RESUMO

The South China Mainland (SCM) and its adjacent continental islands are a global biodiversity hotspot. However, how and when plants dispersed between SCM and Hainan/Taiwan Islands remains largely unknown. In this study, we used restriction site-associated DNA sequencing (RAD-seq) to identify the demographic dynamics and local adaptation of Quercus championii, a dominant forests tree distributed in SCM and Hainan/Taiwan Islands. Through phylogenetic reconstruction, principal components analysis (PCA) and structure analysis, we identified four distinct Q. championii lineages that correspond to its geographical distribution. The genetic structure of Hainan Island population was distinct, possibly reflecting an introgression. We conducted an approximate Bayesian computation analyses and found that Q. championii originated from Southwest China-Northern Vietnam, then dispersed to Southeast China as the climate warmed. During the Pleistocene glacial period, land bridges arose between SCM and Hainan/Taiwan Islands, and the land bridges likely facilitated species dispersal from SCM to these islands. We found a strong correlation between genetic variation and isothermality through a gradient forest analysis and identified precipitation seasonality as a key driver to the local adaptation of Q. championii. Finally, we analyzed putative adaptation loci and identified genes regulating vegetative and reproductive organ development as important for the adaptation of Q. championii to heterogeneous environments. We provide new insights into the evolutionary history and local adaptation of biotas in Southern China and adjacent islands.


Assuntos
Evolução Biológica , Ilhas , Quercus/fisiologia , Teorema de Bayes , Biodiversidade , China , Loci Gênicos , Geografia , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Quercus/genética , Análise de Sequência de DNA , Fatores de Tempo
20.
J Pineal Res ; 66(1): e12532, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30320949

RESUMO

Paraquat (PQ), a broad-spectrum agricultural pesticide, causes cellular toxicity by increasing oxidative stress levels in various biological systems, including the reproductive system. PQ exposure causes embryotoxicity and reduces the developmental abilities of embryos. However, there is little information regarding the toxic effects of PQ on oocyte maturation. In this study, we studied the toxic effects of PQ exposure and the effects of melatonin on PQ-induced damage in bovine oocytes. PQ exposure disrupted nuclear and cytoplasmic maturation, which was manifested as decreased cumulus cell expansion, reduced first polar body extrusion, and abnormal distribution patterns of cortical granules and mitochondria. In addition, PQ treatment severely disrupted the ability of the resulted in vitro-produced embryos to develop to the blastocyst stage. Moreover, PQ exposure significantly increased the intracellular reactive oxygen species (ROS) level and early apoptotic rate, and decreased the glutathione (GSH) level, antioxidative CAT and GPx4 mRNA, and apoptotic-related Bcl-2/Bax mRNA ratio. These results indicated that PQ causes reproductive toxicity in bovine oocytes. Melatonin application resulted in significant protection against the toxic effects of PQ in PQ-exposed oocytes. The mechanisms underlying the role of melatonin included the inhibition of PQ-induced p38 mitogen-activated protein kinase (MAPK) activation, and restoration of abnormal trimethyl-histone H3 lysine 4 (H3K4me3) and trimethyl-histone H3 lysine 9 (H3K9me3) levels. These results reveal that melatonin serves as a powerful agent against experimental PQ-induced toxicity during bovine oocyte maturation and could form a basis for further studies to develop therapeutic strategies against PQ poisoning.


Assuntos
Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Paraquat/toxicidade , Animais , Antioxidantes/metabolismo , Bovinos , Feminino , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...